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1.0 INTRODUCTION

Optical sensors are useful for a wide variety of industries, ranging anywhere from
cameras used on one’s mobile phone, Night Vision Goggles (NVG)s for pilots, and
streak cameras to measure fast photons. When it comes to the need for measuring fast
optical events in the picoseconds to nanoseconds range, nanomaterials can be used.
Well established nanomaterials called Colloidal Quantum Dot (CQD)s can be affordably
bought as Commercially-Off-The-Shelf (COTS) products. CQDs can be used in various
types of sensing applications such as: radiation, temperature, electromagnetics, strain,
up-converting of wavelengths when paired with another material, and many more [1].

In order to use CQDs as sensors, one can utilize them in their liquid form, impregnate
them within a polymer matrix, disperse as a thin-film layer, or drawn within a Photonic
Crystal Fiber (PCF) [1]. Recently, the application of CQDs can be done by using
them within extrusion material of 3D printers [2, 3]. However, CQDs dispersed into
3D printed parts after the 3D structure’s fabrication using conventional 3D printing
technology has not been characterized yet. There is an interesting question regarding
if both the CQDs’ Photoluminescence (PL) intensity and PL lifetime decay can be
tuned by changing the structural fabrication process. This would allow one to change the
optical emission of their sensor in an affordable manner by using the same nanomaterials.

Taking inspiration from drawing up CQDs within a PCF, this paper investigated dispersing
CQDs into a honeycomb 3D printed structure. Design of Experiments (DoE) was used
in order to determine if both the PL intensity and PL lifetime decay can be optimized by
varying both the volume of dispersed CQDs into the 3D printed structure and the thickness
of the 3D printed structure itself [1].

2.0 THEORY

Every CQD contains a core, the primary compound [4]. In order to both prevent
agglomeration of the nanocrystals and ensure compatibility of the nanocrystals into
various media, ligands are bonded to the CQD’s surface. Ligands are organic polymer
chains that help to functionalize the CQDs [5]. During synthesis of CQDs, defects occur
across the surface of the core. To mitigate this issue, a shell compound material (usually
ZnS) is applied around the core. The shell fills in core defects and reduces trap states,
thus increasing Quantum Efficiency (QE) [6]. In addition, shells usually promote a Stokes
shift (separation of the emission and absorption spectra) [6, 7]. This also helps increase
QE as reabsorption of emitted photons may be greatly mitigated or even eliminated [8].

The energy transitions within CQDs have discrete energy levels near the band edges.
They are confined in a small three dimensional structure whose width of confinement
(e.g, spherical CQD diameter) will determine the bandgap energy between the Highest
Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO)
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levels. The HOMO is the highest occupied discrete energy state above the valence band
edge and the LUMO is the lowest unoccupied discrete energy state below the conduction
band edge. In addition, an excited electron promoted from the valence band to the
conduction band will leave a hole and form an exciton (an electron-hole pair that is kept
together by Coulomb interaction) [9, 10]. Photon emission of a CQD occurs when an
exciton relaxes back to its ground state (valence band) [9].

3.0 APPARATUS AND METHODS

Two nanomaterials (supplied by NN-Labs) were used due to a need for more CQDs in
order to create all the samples needed to perform the design of this experiment. They
were bought as a 10 mg by weight colloidal solutions in toluene. The materials used
were: CdSe/ZnS (520 nm emission) and InP/ZnS (530 nm emission). The reason why
their emission wavelengths were different by 10 nm was because the two CQD materials
were not sold as both 520 nm or 530 nm. These CQDs were then dispersed into
honeycomb 3D printed structures with 500µm diameter holes glued onto a thin 2.4892 cm
diameter quartz disc. The structures were fabricated by using a VisiJet M3 Navy ProJet
MJP 3600 Series printer using the UHD setting.

The samples for the design of this experiment used the following three levels for factor
one (volume of CQDs loaded into structure): 40µL, 80µL, and 160µL. The three levels
for factor two (thickness of structure) were: 240µm, 480µm, and 960µm. CdSe/ZnS
CQDs were used for the following pairs of factor one and factor two respectively: 40/240,
40/960, 80/480, 80/960, and 160/960. InP/ZnS were used for the following pairs of factor
one and factor two respectively: 40/480, 80/240, 160/240, and 160/480. Due to limited
resources, only one replication of the fabricated structures were possible at the time of
this study.

The following recipe was used to fabric each sample used in the design of this experiment:
print out 3D printed structure; heat structure in hot oven at 70°C for 30 minutes on top
of a perforated aluminum sheet to remove wax; use boiling water (250°C) to remove
remaining supporting wax in 3D print; use pressurized nitrogen gas to dry off the 3D
print, submerge 3D print back into boiling water, then quickly drop into a glass jar filled
with water to keep it hydrophilic. Once ready to add nanocrystals: drop Isopropyl Alcohol
(IPA) onto top of honeycomb structure; disperse CQDs using a micropipette to top of
structure; let dry for five minutes; place honeycomb structure on top and center of quartz
disc; apply SU-8-5 around circumference of 3D printed honeycomb structure; Ultra Violet
(UV) cure for 1000 s; apply SU-8-5 to top of honeycomb structure on top of a spin coater;
after UV curing edges, ramp-up speed: 500 RPM, spin speed: 3000 RPM; UV cure for
1000 s; remove excess photoresist on back of quartz disc using acetone, IPA, then water;
and finally nitrogen blow dry the sample.
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Drawings and pictures of the 3D printed honeycomb structure can be read in Ref. [1].
After fabrication, each sample was first tested for its PL spectra and then its PL lifetime
decay.

3.1 PL Spectra Measurement Setup

Measurements were conducted at approximately room temperature (23°C). A PL
spectrofluorometer system (Horiba-Jovin Fluorolog-3) was used and the following settings
were: rotation of sample holder (right-angle), sample holder angle (30°), integration
time (0.1 s), wavelength increment (1.00 nm), side entrance slit (1.00 nm), front exit
slit (1.00 nm), grating was set to density 1200 grooves

mm
(Blaze: 500 nm), and averaged

scans was set to five. Excitation wavelengths for each nanomaterial were the following:
CdSe/ZnS (395 nm), InP/ZnS (405 nm), and control (275 nm). All PL intensities
collected for the PL spectra experiment were normalized due to the differences in photon
counts between different CQDs and the intensity of the excitation lamp was not constant
throughout the entire excitation range of the PL spectrometer. QE data was not collected
due to issues with the hardware. However, these limitations of this study were of no issue
as the intent of this paper was to look at both relative changes of Charge Transfer (CT)
and PL lifetime decay.

3.2 UV-Vis PL Lifetime Decay Setup

The UV-Vis PL lifetime decay was conducted at Center for Integrated Nanotechnologies
(CINT) within Sandia National Laboratory (SNL). The equipment used was the PTI
Felix 32 Spectrofluorimeter and the software used was FeliX Analysis module version
1.2. The available PL decay temporal resolution was ≈ 500 ps. This comes from the
Guassian shape from the excitation diodes that had an ≈ 1.2 − 1.4 ns Full Width at
Half Maximum (FWHM) and the decay measurement began once the excitation source
decayed, hence the temporal resolution was about half of the FWHM of the excitation
diode pulse. An excitation wavelength of 405 nm was selected. The software used
considered the Instrument Response Function (IRF) when calculating the multicomponent
exponential fitting values. The following settings were used for each PL decay spectra:
decay was averaged (3x), integration time (0.5 s), and the number of data points (100).
The peak emission of each CQD material (520 nm and 530 nm) was measured. All PL
intensities were normalized due to the inherent differences (albeit, a difference of ≈ 10%
between counts per second during a comparison test) in QE between the different CQD
materials. The multicomponent exponential fitting model was used and represented by
equation 1.

F (t) = F0 + A1 exp−t− t0
τ1

+ A2 exp−t− t0
τ2

+ ... (1)

From equation 1, F0 is the initial intensity, A#s are the preexponential components, τ#s

are the decay constants in ns, t is present time in ns, and t0 is the initial time in ns.
The multicomponent exponential model using anywhere from two to four exponential
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components is similar to the bi-exponential model which has been determined to make a
good approximated fit of a CQD’s decay [11].

4.0 RESULTS AND DISCUSSIONS

First, this section goes over the PL spectra tunability when changing both the thickness
of the 3D printed structure and the volume of CQDs loaded into the structure. PL spectra
collected for all samples can be seen in Fig. 1.

Figure 1. PL spectras showing both CQDs’ main peak of emission and CT peak of
emission at ≈ 460 nm (located on gray dashed vertical line).

The secondary peak that appeared at ≈ 460 nm was due to CT from the CQDs transferring
to the surrounding SU-8-5 polymer material used as a capping material [12–14]. It was
determined not to be Förster Resonance Energy Transfer (FRET) due to the CT peak
occurring at a higher energy wavelength (a blue shift) [15]. The control sample emitted
a peak wavelength at 365 nm whose spectra can be seen in Ref. [1]. Thus, this new
CT peak only occurred once CQDs were loaded into the structure. Minitab was utilized
to create a contour plot at the 460 nm peak. This plot is seen in Fig. 2. For the raw
data entered into Minitab, the reader is encouraged to read the table in Appendix W. of
Ref. [1].
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Figure 2. Contour plot showing the change in relative intensity of the CQD
520 nm-530 nm emission peaks.

There is a relation between the volume of CQDs dispersed, the thickness of the 3D
printed structure, and physical interactions between the CQDs and the SU-8-5 polymer.
A thick structure would have a lower PL intensity than a thinner structure due to both the
amount of reabsorption and the ability for the emitted photons to get out of the 3D printed
structure. A higher volume of CQDs would increase the probability of reabsorption
thereby lowering PL intensity, but Fig. 2 showed an increase in PL intensity when the
structure was thin. This could be due to CT effects.

Next, this section goes over the PL lifetime decay when changing both the thickness of
the 3D printed structure and the amount of CQDs loaded into the structure. The values
used in the multicomponent exponential models in this paper can be seen in Appendix
U. of Ref. [1]. From these values, the PL decay multicomponent exponential curve-fitted
models for the experiment can be seen in Fig. 3.
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Figure 3. Multicomponent exponential model curve fitting of PL decay of CQDs
applied as a 3D printed structure collected at CQDs’ main peaks of emission.

It can be seen that all of the PL lifetime decays had variation. Minitab was used to create
a PL lifetime decay contour plot. The decay time used was taken at 0.001% of the original
amplitude. This contour plot can be seen in Fig. 4.

Figure 4. Contour plot showing the PL decay time at 0.001% of the original relative
amplitude. This is measured off of the CQDs’ emission peak of 520 nm-530 nm.
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CT can be used to tune the PL lifetime decay of the materials investigated in this paper.
Changing both the volume of CQDs dispersed into the 3D printed structure and the
thickness of the 3D printed structure can allow one to optimize the PL lifetime decay
for use in fast optical sensors.

5.0 CONCLUSIONS

This paper shows how one can tune both the relative PL emission of the CT emission
peak and the PL lifetime decay at the CQDs’ main peaks of emission. This can be done by
using a unique fabrication technique of dispersing CQDs within a 3D printed honeycomb
structure. The CT was determined to come from the SU-8-5 polymer used to cap the
structure. The tunable CT has an effect on both the relative PL intensity and the PL lifetime
decay, which has significance in terms of creating new sensors. Useful implications from
this paper include: CQD emission can up-converted when in the proximity of a polymer
designed to transfer their charge. This up-converting property could be useful for defense
sensors and technologies such as NVGs. In addition, CQDs being used as fast x-ray
scintillators would encourage future work into utilizing CT effects in tandem with organic
scintillating polymers in this type of 3D printed structure [16–19]. Aside from CT effects,
this paper encourages future work when wanting to use CQDs in radiation detection
applications since the 3D printed structures can be used to stack CQDs. This stacking
of CQDs in turn would increase the overall QE of the scintillating system. Since the 3D
printed structure is made up of low-Z organic materials, this concept may also have use
in neutron detection.
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7.0 LIST OF SYMBOLS, ABBREVIATIONS, AND ACRONYMS

CINT Center for Integrated Nanotechnologies
COTS Commercially-Off-The-Shelf
CQD Colloidal Quantum Dot
CT Charge Transfer
DoE Design of Experiments
FRET Förster Resonance Energy Transfer
FWHM Full Width at Half Maximum
HOMO Highest Occupied Molecular Orbital
IPA Isopropyl Alcohol
IRF Instrument Response Function
LUMO Lowest Unoccupied Molecular Orbital
NVG Night Vision Goggles
PCF Photonic Crystal Fiber
PL Photoluminescence
QE Quantum Efficiency
SNL Sandia National Laboratory
UV Ultra Violet
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